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ABSTRACT
The time-dependence of the neutron flux is investigated for continuous-energy infinite media and

simple, one-speed, one-dimensional media using a transition rate matrix Monte Carlo tally based on a
formulation of the α-eigenvalue problem. The research code TORTE calculates the α-eigenvalue
spectra and shape eigenfunctions of these media. TORTE also performs the eigenfunction expansion,
or modal expansion, necessary to analyze transient behavior of the neutron flux for an arbitrary initial
source. These calculations compare well to time-dependent Monte Carlo calculations for infinite
media and simple scattering slabs. For one-dimensional media, TORTE-calculated α eigenvalues and
shape eigenfunctions compare well to those calculated in literature. Much of the work is verification
with previous benchmarks, but we are able show some capabilities of this method.

Key Words: Monte Carlo, time eigenvalue, eigenfunction expansion, criticality

1 INTRODUCTION

The fission matrix method of estimating k eigenvalues and eigenvectors of a system using
Monte Carlo techniques [1] discretizes the spatial domain and estimates transition probabilities
between locations of fission events. For an adequately chosen spatial mesh, the eigenvalues and
eigenvectors of the fission matrix match those of the k-eigenvalue problem of the underlying
system. The fundamental k eigenvector matches the neutron flux for a steady-state, critical
system. Time-dependent neutron behavior of a system is more adequately obtained using the
α-eigenvalue problem, where eigenvalues describe the temporal behavior and eigenvectors
describe the position, energy, and direction variation of the neutron distribution.

The transition rate matrix method [2] is the continuous-time analog of the discrete-time
fission matrix method, where probabilities between states are calculated for a single fission



Betzler, et. al.

generation. The transition rate matrix contains rates defining transitions between states in
continuous time. In the language of neutron transport, the eigenvalues of the transition rate matrix
are the time-absorption or α eigenvalues, and the eigenvectors are discrete approximations of the
eigenfunctions of the adjoint (backwards) transport equations.

For this paper, discrete states are defined over intervals in the energy spectrum for an infinite
medium, and separately, over the position and direction domain for simple, one-dimensional
media. The tallies needed to estimate elements of the transition rate matrix are defined. The
standalone code TORTE calculates these tallies during a forward Monte Carlo simulation. For
infinite media, observations of the convergence of α eigenvalue spectra are shown, and the
accuracy of the calculated spectra in approximating the actual spectra is supported by agreement
of the eigenfunction expansion solutions to time-dependent Monte Carlo calculations. For
one-dimensional problems, calculated α eigenvalues and shape eigenfunctions compare well with
benchmark solutions.

2 THEORY

Monte Carlo methods use probability and random numbers to perform direct simulation of
neutron transport in systems. Solutions to the neutron transport equation are inferred through
mean values of estimators, called tallies. These solutions describe the mean-value neutron
behavior in the system with a precision dependent on the number of random numbers used in the
calculation.

The common assumption for handling time dependence of the neutron flux, used in point
kinetics and quasi-static methods, is that the temporal dimension is largely separable from the rest
of phase space (position, energy, direction). Eigenfunction expansion uses this separation, but
expands the neutron flux as a linear combination of the shape eigenfunctions multiplied by a time
function. For a system with no external source for t > 0, this time function is an exponential, and
ψ at any time t is described as

ψ(r, E, Ω̂, t) =
∞∑
n=0

Anψn(r, E, Ω̂)eαnt, (1)

where αn is the n-th eigenvalue, ψn is the corresponding shape eigenfunction, and An is an
amplitude coefficient related to the neutron source. The fundamental eigenvalue α0 is typically of
most interest because it describes the asymptotic behavior of the system. The ψn contain
information about the position, energy, and direction dependence, and are thus referred to as
shape eigenfunctions. The combined value of Anψn is sometimes known as the n-th kinetic
mode. Completeness of the eigenfunctions has never been rigorously proven for a general system,
but seems to work well empirically [3]. The delayed neutron precursor concentrations Cm(r, t)
also follow this exponential time behavior.

2.1 Transition Rate Matrix

The α eigenvalues and eigenfunctions are obtained from Monte Carlo simulation by
discretizing the phase space into a collection of states and calculating transition rates between the
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states. Each state represents particles (neutrons or precursors) that meet certain conditions. For
infinite media, these states denote energy intervals or delayed neutron precursor groups. For
one-dimensional media, these states denote a position and direction interval. In either case, the
transition rate matrix Q has the form:

Q =


−q1 q12 · · ·
q21 −q2 · · ·
...

... . . .

 . (2)

The quantity qi is the mean net removal rate from state i, and qij (i 6= j) is the mean rate that
neutrons transition from state i into j. Note that qi includes capture rates from state i, so the rows
are not normalized to zero. Thus, there may be an overall net gain or loss in the neutron
population, as is expected for a supercritical or subcritical system.

The Q for infinite and one-dimensional media differ greatly. For infinite media, Q is
organized into four partitions describing transition rates between and within energy intervals and
precursor groups. These transition rates are expressible in terms of cross sections. The top-left
partition describes the transition of neutrons between energy intervals:

qij =
vi(ΣRi − χpiνpiΣfi), i = j

vi(Σsij + χpjνpiΣfi), i 6= j
, (3)

where vi, ΣRi, Σfi, νpi, and χpi are the average speed, removal and fission cross sections, average
prompt neutrons emitted per fission, and prompt fission emission probability for energy interval i;
and Σsij is the scattering cross section from energy interval i to j. The top-right partition pertains
to neutrons inducing fission resulting in the production of delayed neutron precursors:

qij = viβjνdiΣfi, (4)

where βj is the delayed fraction for precursor group j and νdi is the average delayed neutrons
emitted per fission for energy interval i. The bottom-left partition represents the emission of
neutrons from precursors:

qij = χijλi, (5)

where χij is the emission of neutrons from precursor group i into neutron energy interval j, and
λi is the decay constant for precursor group i. Finally, the bottom-right partition represents
precursor decay (removal):

qij =
λj, i = j

0, i 6= j
. (6)

For one-dimensional media, Q is composed of two types of rates describing: (i) transitions
between direction intervals for the same position interval (neutrons scattering from µ→ µ′) and
(ii) transitions between position intervals for the same direction interval (neutrons moving to the
next position interval at direction µ). The transition rate between direction intervals for the same
position interval is represented by the scattering rate and fission rate:

qij = vi(Σsij + χjνiΣfi), (7)
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where Σsij is the scattering cross section from direction interval i to j and χj is the prompt fission
emission probability for direction interval j. For this paper, isotropic scattering and prompt
fission neutron emission is assumed. The transition rate between position intervals for the same
direction interval is represented by the rate that neutrons travel through the position interval:

qij =
vi
dij
, (8)

where dij is the average distance traveled before exiting to position interval j. The diagonal qi
elements are the total removal rate from state i.

In both formulations, the quantities are elements of the matrix from the adjoint α-eigenvalue
problem. The adjoint eigenvalues α† are the complex conjugates of the forward eigenvalues α, but
because the matrix is real, if an eigenvalue is complex, its complex conjugate is also an
eigenvalue. Thus, the forward and adjoint eigenvalue spectra contain the same eigenvalues. Still,
the forward eigenvectors must be obtained by taking Q>, exchanging the speeds vi and vj , and
finding the eigenvectors of the resultant matrix.

2.2 Monte Carlo Tallies

The Monte Carlo simulation tallies the elements of Q during a k-eigenvalue calculation using
the power iteration technique. Technically, when the system is not exactly critical, the spectrum is
incorrect; this effect is assumed to be negligible. During the simulation, reaction rate tallies are
used to estimate the qij’s.

All elements are combinations of removal rates and probabilities. For infinite media:

λi = τ−1Ri = (average decay time from precursor group i)−1,

viΣRi = τ−1Ri = (average removal time from energy interval i)−1,

viΣfi = viΣRi
Σfi

ΣRi

= τ−1Ri

(
# of fissions caused by neutrons in energy interval i

# of removals from energy interval i

)
,

viΣsij = viΣRi
Σsij

ΣRi

= τ−1Ri

(
# of scatters from energy interval i into interval j

# of removals from energy interval i

)
.

For one-dimensional media, where a state is a direction interval in a position interval:

viΣfi = τ−1i

(
# of fissions caused by neutrons in state i

# of removals from state i

)
,

viΣsij = τ−1i

(
# of scatters from state i into state j

# of removals from state i

)
,

vi
dij

= τ−1i

(
# of removals to state j

# of removals from state i

)
,

where τi is the average removal time from state i.
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2.3 Eigenfunction Expansion Coefficients

The expansion coefficients An determine the contribution of the n-th shape eigenfunction to
the flux solution. While the eigenvalues αn and their corresponding shape eigenfunctions ψn are
only dependent on the system configuration, the expansion coefficients An depend on initial
source characteristics S(r, E, Ω̂, t) as well:

An =

〈
ψ†n, S0

〉〈
ψ†n, v−1ψn

〉
+
∑
m

〈
C†m,n, Cm,n

〉 , (9)

where the brackets denote integration over all relevant phase space variables, and the † denotes
adjoint shape eigenfunctions. The initial source S0 may be used to model a pulsed source or an
initial condition (such as an initial flux and precursor distribution) for time-dependent analysis.

3 INFINITE-MEDIUM CONTINUOUS-ENERGY RESULTS

TORTE is a standalone research code written in FORTRAN using LAPACK [4] for matrix
eigenvalue functions. It performs k-eigenvalue power iteration calculations with multigroup or
continuous-energy nuclear data (read from ENDF/B-VII.0 [5] or ENDF/B-VII.1 [6]). For
scattering, TORTE handles free gas and continuous S(α, β), but is limited in that it does not treat
high-energy inelastic scattering. During the power iteration, TORTE collects the aforementioned
tallies for the qij and calculates the α eigenvalues and eigenfunctions after the run is completed.
Code physics and multigroup problems agree well with expected distributions and analytical
solutions [2]. Here, the discussion is limited to continuous-energy media.

3.1 Convergence Behavior

In a Monte Carlo simulation, as the number of particle histories increases, the uncertainty in
results decrease. Extending this to TORTE, the tallies for the qij decrease in uncertainty as more
particle histories are used, in turn resulting in better solutions for the α eigenvalue spectrum and
eigenfunctions. The fundamental α eigenvalue and shape eigenfunction converge first, and in
general, the lower eigenvalues and shape eigenfunctions converge faster than higher ones.

This observed behavior shows that the method converges to a solution, but the ability of that
solution to approximate the actual α-eigenvalue spectrum of the problem is related to the number
of energy intervals used to formulate Q. Consider a very subcritical, graphite-moderated medium
with an 80:1 C:UO2 molecular ratio and 4.25% enriched uranium. Several TORTE runs have
numbers of equal-lethargy intervals ranging from G = 80 to G = 3000 between E0 = 20 MeV
and EG = 1× 10−11 MeV. All runs were performed with 100× 106 particles and calculated
k = 0.86962± 0.00015. The fundamental eigenvalue is limited by the slowest decaying delayed
precursor group, α0 = −0.012526 s−1. Fig. 1 shows the calculated α-eigenvalue spectrum for
selected numbers of energy intervals.

All cases converge to the same mentioned fundamental α0 matching the slowest decaying
delayed neutron precursor. All cases also agree for the first few (largest) eigenvalues, but above
that, significant differences appear. The cases with the fewest energy bins differ the most from the
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Figure 1: The α-eigenvalue spectrum for the subcritical graphite problem.

other calculations (Fig. 1, left). But, as the number of energy intervals increases, the bulk of the
spectrum remains unchanged and seems to converge with additional eigenvalues appearing closer
to the real axis (Fig.1, right). This is empirical evidence that as the energy intervals increase, the
solution more closely approaches the actual α-eigenvalue spectrum. When fewer energy intervals
are used, the higher α eigenvalues are an approximation to the higher portion of the actual
α-eigenvalue spectrum. Thus, many of the most negative eigenvalues of the lower energy interval
cases (G = 80) are between those of higher energy interval cases (G = 640). This is supported by
similar observations of the fission matrix method for k-eigenvalues [1]. One complication of
analyzing specific α eigenvalues is the presence of lines in the spectrum [3]. These lines appear
during calculations in areas of the spectrum where specific eigenvalues continue to change as the
number of energy intervals is increased. This change is due to numbers of eigenvalues grouping
to form lines in the spectrum.

3.2 Eigenfunction Expansion

Using the same subcritical graphite problem, TORTE performs eigenfunction expansion to
obtain a time-dependent solution for the neutron flux as a result of a pulsed source with no initial
delayed neutron precursors (no delayed neutron background). All modes are included during the
expansion. For any of the cases G = 80 through G = 3000, the expanded solutions are
indistinguishable on a log-log plot, except for the resolution of resonances that an increased
number of energy intervals provides. This serves to support the notion that the spectrum
calculated with fewer energy intervals is an approximation to the larger spectrum. Using the
G = 3000 case, Fig. 2 compares the expanded solution with a true, time-dependent Monte Carlo
calculation performed with a censusing technique. To increase the statistics for the
time-dependent Monte Carlo run, only G = 320 equal-lethargy intervals was used.

The eigenfunction-expanded solution is able to preserve much of the detail in the energy
spectrum and matches well with the time-dependent Monte Carlo calculation throughout the
transient. At t = 0.1 ms, the neutrons have just begun to slow down from the initial 14.1 MeV
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pulse strength of 1015. A noisy behavior is observed in the eigenfunction expansion for this short
time period t < 0.3 ms. This is at least in part due to the inability of the eigenfunction expansion
to accurately model such a sharp source. In cases where smoother sources are used, this behavior
is less pronounced, but still exists, suggesting some other contributions to this discrepancy. The
time-dependent Monte Carlo calculation has no issues handling these incredibly short time
periods. At t = 0.5 ms, the slowing neutrons form a distinct flux packet as they collide with the
graphite moderator. Both solutions match very well, with the time-dependent Monte Carlo
solution having issues with low-probability high energy neutrons born from fast fissions. At
t = 10 ms, the flux packet decreases in size as the fast neutron flux has decreased considerably.
Dips in the spectrum because of 238U capture resonances are resolved in the eigenfunction
expansion solution due to the large number of energy intervals used. The time-dependent Monte
Carlo solution also has dips due to resonances, but they are less detailed. At t = 250 ms, the flux
packet continues to decrease as the spectrum begins to assume the shape of the prompt
fundamental shape eigenfunction. Noise present in the higher energies of the time-dependent

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

10
8

10
-8

10
-6

10
-4

10
-2

10
0

sc
a
la

r 
fl

u
x

energy (MeV)

t = 0.1 ms 

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

10
8

10
-8

10
-6

10
-4

10
-2

10
0

sc
a
la

r 
fl

u
x

energy (MeV)

t = 0.5 ms 

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

10
8

10
-8

10
-6

10
-4

10
-2

10
0

sc
a
la

r 
fl

u
x

energy (MeV)

t = 10 ms 

Time-dependent Solution
Eigenfunction Expansion

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

10
8

10
-8

10
-6

10
-4

10
-2

10
0

sc
a
la

r 
fl

u
x

energy (MeV)

t = 250 ms 

Figure 2: Snapshots of a transient for the subcritical graphite problem.
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solution is due to the decreasing neutron population leading to the decreasing fission rate
necessary to replenish the fast flux. The spectrum converges to the prompt fundamental shape
eigenfunction on the order of a few seconds. Not long after, delayed fission neutrons will
dominate the spectrum and it will decrease according to the delayed precursor decay constants.
This is difficult to calculate with time-dependent Monte Carlo because of the very low probability
(> 1%) of a fission resulting in the emission of a delayed neutron precursor. The delayed neutron
shape eigenfunctions are generally very similar to that of the prompt fundamental shape
eigenfunction.

4 ONE-DIMENSION RESULTS

TORTE was edited to include the spatial variables needed to perform one-dimensional Monte
Carlo transport. The k-eigenvalue power iteration and tally scheme is similar, but the code is
one-speed (v = 1 cm/s) and total fission cross sections are set to unity Σt = 1 cm−1. Thus, the
resulting calculations are dimensionless. Isotropic scattering and fission emission are assumed.
The code is set up for one-dimensional finite slabs of thickness ∆ with vacuum boundary
conditions at x = 0 and x = ∆, as any reflecting boundary condition eliminates higher shape
eigenfunctions from the solution. Good literature on α-eigenvalues for simple geometries provide
a benchmark to which the transition rate matrix method may be compared. The Green’s Function
Method (GFM) [7] is capable of calculating the α-eigenvalue and shape eigenfunctions of
scattering or multiplying one-dimensional media. The next sections discuss some verification
work.

4.1 Non-multiplying Medium

Initial tests show that the transition rate method adapts well to a simple scattering slabs.
Instead of a k-eigenvalue calculation, TORTE uses a collision (c) eigenvalue iteration to obtain a
neutron source within the slab. Fig. 3 compares the eigenfunction expansion to the
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Figure 3: Snapshots of a transient in a scattering slab.
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time-dependent Monte Carlo solution for a ∆ = 25.0 slab subject to an isotropic source of
strength 1015 in the center of the slab at x = 12.5. This solution was calculated with N = 401
position intervals and L = 8 angular intervals to obtain fine results. The eigenfunction expansion
solution approximates the actual solution well throughout the transient, but has some issues in the
region ahead of the neutron pulse where there should be zero neutrons. The smooth shape of the
eigenfunction expansion solution is unable to approximate such a sudden change. In this case, the
initial source is in the center of the slab, so the asymmetric (odd-numbered) eigenfunctions are
not important to the solution. This is preserved during the eigenfunction expansion as the
coefficients for the odd-numbered shape eigenfunctions are orders of magnitude smaller than
coefficients of even-numbered ones.

4.2 Multiplying Medium

The transition rate method also adapts to multiplying slabs. Consider a five region problem
consisting of fuel (ν = 3.5, Σf = 0.2, Σs = 0.8), moderator (Σs = 0.8, Σγ = 0.2), and absorber
(Σs = 0.1, Σγ = 0.9). The total cross section Σt for all materials is set to unity. The outer regions
on left and right are fuel (∆ = 1), the center region is absorber (∆ = 5), and the regions between
are moderator (∆ = 1). The two fuel regions are loosely coupled due to the large absorber in
between; very few neutrons born in one fuel region will reach the other. Also, the first two k
eigenvalues and α eigenvalues are very close to one another. These factors potentially complicate
the rate of convergence.

With N = 270 position intervals and L = 12 angular intervals, TORTE calculated
k = 0.9900929± 0.0000321, α0 = −0.006157484, and α1 = −0.006447668. These compare well
to the GFM-calculated k = 0.9900716, α0 = −0.006156369, α1 = −0.006440766, though they
do not match exactly. TORTE also calculates a whole spectrum (NL×NL) of higher eigenvalues
and shape eigenfunctions not included in the GFM analysis. The first two shape eigenfunctions
compare well to GFM calculations. Fig. 4 compares the TORTE-calculated fundamental and first
shape eigenfunction to those calculated by the GFM [7]. The shape eigenfunctions calculated by
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Figure 5: Snapshots of a transient in the five-region problem.

TORTE do not match exactly. This is in part due to the loose coupling between the two regions.

Fig. 5 shows an example of the eigenfunction expansion applied to this multiplying medium,
with a rightward incident source from the left vacuum at x = 0. It compares the fundamental
mode solution to the full expansion including all higher modes, not just the two shown in Fig. 4.
For this case, no time-dependent Monte Carlo solutions were obtained. The behavior of the flux
throughout the transient is very smooth, even at short times, but there are issues at the front of the
propagating flux shape where the actual flux should drop abruptly to zero. At t = 5 the neutrons
entering from the left have penetrated to the absorbing center of the problem, where a small bump
forms at the front of the spectrum. Small inflections at x = 1 and x = 2 show the change in
materials from fuel to moderator to absorber. There is a smooth drop off after x = 5 in the
solution, but there should be zero neutrons anywhere x > 5 considering the speed of neutrons and
the time. At t = 10, the neutrons have arrived at the other end of the slab and begin to fission in
the opposite fuel material. Inflections points again show the change in materials at the right end of
the slab. The flux shape still has a long way to go before approaching the fundamental mode.

4.3 Discussion

The transition rate matrix method is able to preserve information about one-dimensional
scattering and multiplying media, yielding an accurate expanded solution. The quality of the
solution depends on the number of position and direction intervals, N and L, used in the
formulation of Q. As more intervals are used, the ability of the calculated α eigenvalues and
shape eigenfunctions to approximate the actual ones increases, though this dependence is still to
be investigated. The resulting Q is a NL×NL matrix and has potential to be very large.
However, for these problems the matrix is very sparse, with only N(L× L) +NL nonzero
elements. Thus, sparse matrix storage is important for using this method for larger problems.

The eigenfunction expansion is able to approximate the time-dependent behavior of the
scalar flux within the slabs. The expansion for the scattering slab compares well to the
time-dependent Monte Carlo solution, where issues arise when attempting to model irregular
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spectrum shapes. The expansion for the five region multiplying medium shows how different the
spectra behaves in comparison to the fundamental mode. Before the higher modes decay, the
fundamental mode is an incorrect solution for the time dependent flux.

5 CONCLUSIONS & FUTURE WORK

A transition rate matrix, the continuous-time analog of the fission matrix, accurately
computes α eigenvalues and eigenvectors in infinite and one-speed, one-dimensional media.
These can be applied to model transient behavior of the energy spectrum for infinite media or of
the spatial dependence in one-dimensional media. A standalone research code TORTE performs
these calculations with continuous-energy nuclear data for infinite media and one-speed
one-dimensional slabs. TORTE is able to approximate the actual α-eigenvalue spectrum for
infinite media. The eigenfunction expansion results compare very well to time-dependent Monte
Carlo solutions.

Future work will focus on further verifying one-dimensional multiplying media with
previous work and time-dependent Monte Carlo solutions. Also, studying the effect of position
and direction interval choices on numerical convergence and eigenvalue accuracy is important.
Incorporating this methodology for continuous-energy slabs can be seen as a combination of the
two previous sections, where for each direction interval in a spatial interval, there is a given
energy distribution.

6 ACKNOWLEDGMENTS

Funding for this work was provided by the U.S. DOE/NNSA Advanced Scientific Computing
and Nuclear Criticality Safety programs.

7 REFERENCES

1. S. E. Carney, F. B. Brown, B. C. Kiedrowski, W. R. Martin, “Fission Matrix Capability for
MCNP Monte Carlo,” Trans. Am. Nucl. Soc., 107 (2012).

2. B. R. Betzler, B. C. Kiedrowski, F. B. Brown, W. R. Martin, “Calculating Infinite-Medium
α-eigenvalue Spectra With a Transition Rate Matrix Method,” Proc. M&C, (2013).

3. E. W. Larsen, P. F. Zweifel, “On the Spectrum of the Linear Transport Operator,” J. Math.
Phys., 15, No. 11, pp. 1987-1997 (1974).

4. E. Anderson, et al., LAPACK Users’ Guide, Society for Industrial and Applied Mathematics,
Philadelphia, PA, USA (1999).
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6. M. B. Chadwick, M. Herman, P. Obložinský, et al., “ENDF/B-VII.1 Nuclear Data for Science
and Technology: Cross Sections, Covariances, Fission Product Yields and Decay Data,” Nucl.
Data Sheets, 112, pp. 2887-2996 (2011).

7. D. E. Kornreich and D. K. Parsons, “Time-eigenvalue Calculations in Multi-Region Cartesian
Geometry Using Green’s Functions,” Annals of Nuclear Energy, 32, pp. 964-985 (2005).

Page 11 of 11


